Development of erythropoietin receptor-targeted drug delivery system against breast cancer using tamoxifen-loaded nanostructured lipid carriers
نویسندگان
چکیده
Tamoxifen (TAM) has been used in the treatment of breast cancers and is supplemented with erythropoietin (EPO) to alleviate the cancer-related anemia. The purported deleterious effects caused by the use of EPO with chemotherapeutic agents in the treatment of cancer-related anemia vary across studies and remain controversial. The use of nanoparticles as a drug delivery system has the potential to improve the specificity of anticancer drugs. In this study, we simultaneously incorporated two pharmacological active ingredients in one nanocarrier to develop EPO-conjugated TAM-loaded lipid nanoparticles (EPO-TAMNLC), a targeted delivery system, to enhance the cytotoxic activity while reducing the side effects of the ingredients. The effect of temperature in modulating the thermodynamic parameters associated with the binding of EPO and TAMNLC was assessed using isothermal titration calorimetry, while the unfolding of EPO structure was determined using fluorescence-quenching approach. The association efficiency of EPO and TAMNLC was 55.43%. Unlike binding of albumin to TAMNLC, the binding of EPO to TAMNLC occurred through endothermic and entropy-driven reaction. The EPO-TAMNLC formulation was stable because of the hydrophobic interaction and the high free energy, suggesting the spontaneity of the interactions between EPO and TAMNLC. The EPO-TAMNLC enhanced the in vitro cytotoxicity of TAM to MCF-7 cells. The EPO surface-functionalized TAMNLC could sequentially deliver EPO and TAM as well as improving site-specific delivery of these therapeutic compounds.
منابع مشابه
Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity.
Cancer nanotherapeutics is beginning to overwhelm the global research and viewed to be the revolutionary treatment regime in the medical field. This investigation describes the development of a stable nanostructured lipid carrier (NLC) system as carrier for Tamoxifen (TAM). The TAM-loaded NLC (TAM-NLC) developed with 200mg of TAM showed a spherical particle with the size of 46.6nm, polydispersi...
متن کاملNanostructured lipid carriers loaded with Melaleuca alternifolia Oil preparation, physicochemical assessment, and evaluation of antimicrobial effects against Staphylococcus epidermidis
Thanks to their outstanding advantages, nanostructured lipid carriers (NLCs) have recognized in various fields these days. One way to discover extra useful products against typical bacteria (e.g., Staphylococcus epidermidis) is NLCs loaded with essential oils. This paper aims to provide NLCs to encapsulate MA oil and characterize and survey the obtained MA...
متن کاملTamoxifen Drug Loading Solid Lipid Nanoparticles Prepared by Hot High Pressure Homogenization Techniques
As drug delivery systems Nanoparticulate widely investigated because of many advantages such as smaller size, controlled drug release potential, targeting ability, enhancement of therapeutic efficacy and reduction of toxicity. So, Solid Lipid Nanoparticles have recently received considerable attention as alternative drug delivery carrier. In this study Solid Lipid Nanoparticles (SLNs) containin...
متن کاملAerosol delivery of ferulic acid-loaded nanostructured lipid carriers: A promising treatment approach against the respiratory disorders
Introduction: Treatment of lung diseases is one of the major healthcare challenges. Ferulic acid (FA), a phenolic compound with well-established antioxidant and anti-inflammatory properties, has shown promising therapeutic potential against the pulmonary disorders; however, low bioavailability may negatively affect its efficiency. This, prompted us to incorporate FA into the nanostructured ...
متن کاملFolate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells
Objective: Targeted-drug-delivery based lipid nanoparticles has emerged as a new and effective approach in cancer chemotherapy. Here, we investigated the ability of folate-modified nanostructured lipid carriers (NLCs) to enhance letrozol (LTZ) efficacy in MCF-7 breast cancer cells. Methods: New formulations were evaluated regarding to particle size and scanning electron microscope (SEM) feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017